hydrogen generation from hydrolysis of sodium borohydride using sulfonated porous carbon as reagent/catalyst

Authors

arash shokrolahi

abbas zali

hamid reza pouretedal

abstract

the hydrolysis of sodium borohydride as a source of hydrogen gas is studied at different mole ratios of h+ to nabh4. the sulfonated porous carbon (spc) is used as a source of hydrogen ion and catalyst. it is found that the sulfonated porous carbon exhibits high activity for the hydrolysis of nabh4 to generate hydrogen gas at room temperature in comparison to amberlyst-15 and nafion-nr50. the kinetic rate constant of hydrolysis reaction is calculated by measurement of the evolved hydrogen gas as a function of time. the kinetic rate constant of nabh4 hydrolysis is approximately increased 7.6 times at presence of spc as a solid acid/catalyst versus blank hydrolysis reaction. the activation energy of sodium borohydride hydrolysis is obtained 1.24 kjmol-1.the kinetic rate constant (kapp, s-1) of hydrogen generation reaction increased from 0.023 to 0.626 with increasing of h+(spc)/nabh4 from 0.25 to 1.50. the spc activity with mole ratio of h+/nabh4=1 show an efficiency of 91% at time 25s.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Hydrogen generation from hydrolysis of sodium borohydride using sulfonated porous carbon as reagent/catalyst

The hydrolysis of sodium borohydride as a source of hydrogen gas is studied at different mole ratios of H+ to NaBH4. The sulfonated porous carbon (SPC) is used as a source of hydrogen ion and catalyst. It is found that the sulfonated porous carbon exhibits high activity for the hydrolysis of NaBH4 to generate hydrogen gas at room temperature in comparison to Amberlyst-15 and Nafion-NR50. The ki...

full text

Hydrogen generation from hydrolysis of sodium borohydride using sulfonated porous carbon as reagent/catalyst

The hydrolysis of sodium borohydride as a source of hydrogen gas is studied at different mole ratios of H+ to NaBH4. The sulfonated porous carbon (SPC) is used as a source of hydrogen ion and catalyst. It is found that the sulfonated porous carbon exhibits high activity for the hydrolysis of NaBH4 to generate hydrogen gas at room temperature in comparison to Amberlyst-15 and Nafion-NR50. The ki...

full text

Dynamic Modeling of Hydrogen Generation via Hydrolysis of Sodium Borohydride

This paper deals with the dynamic modeling of a hydrogen production system using gPROMS. The model includes mass balances, liquid-gas equilibrium relations, mass transfer laws and kinetic reaction equations. The initial reaction mixture is a sodium borohydride solution that reacts via a self-hydrolysis mechanism in the presence of water. The behavior of this system was measured in terms of prod...

full text

Bursting Dynamics in Molecular Hydrogen Generation via Sodium Borohydride Hydrolysis

The hydrolysis of borohydride salts is a promising process for the generation in situ of pure molecular hydrogen that can be used as an alternative fuel. One of the obstacles toward its concrete application in the realm of green energy resides in nonlinear behaviors of H2 delivery during the reaction development. In particular, we have recently shown that this system behaves like a chemical osc...

full text

kWe sodium borohydride hydrogen generation system Part II: Reactor modeling

Sodium borohydride (NaBH4) hydrogen storage systems offer many advantages for hydrogen storage applications. The physical processes nside a NaBH4 packed bed reactor involve multi-component and multi-phase flow and multi-mode heat and mass transfer. These processes are lso coupled with reaction kinetics. To guide reactor design and optimization, a reactor model involving all of these processes i...

full text

Sulfonated porous carbon catalyzed esterification of free fatty acids

The esterification of free fatty acids (FFA) with methanol is studied using Sulfonated Porous Carbon (SPC) as catalyst. In compare to the amorphous sugar catalyst and protonated Nafion, the proposed catalyst shows stability and high efficient performance in biodiesel production. The highest initial rate of oleic acid conversion is obtained at catalyst loading of 1 mmol H+ and mole ra...

full text

My Resources

Save resource for easier access later


Journal title:
iranian journal of catalysis

Publisher: islamic azad university, shahreza branch

ISSN 2252-0236

volume 2

issue 4 2012

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023